If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x-240=0
a = 4; b = -20; c = -240;
Δ = b2-4ac
Δ = -202-4·4·(-240)
Δ = 4240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4240}=\sqrt{16*265}=\sqrt{16}*\sqrt{265}=4\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{265}}{2*4}=\frac{20-4\sqrt{265}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{265}}{2*4}=\frac{20+4\sqrt{265}}{8} $
| 5/(x-6)=3x-2 | | 0=z+26=-4 | | 2/a+2=-1 | | 30+2x+2x=100 | | (4n+2)=-2(2n-1) | | 6x+4x-56=42-4x | | 5(x+8)=5x+30 | | 3=-1v+4+6v-36 | | 5n-24=25 | | 6t=-9−3t | | 24=5n-21 | | -5=-8+y÷10 | | 4b+0=9 | | 2(x-3)+2=4x-2(2+x) | | 6+z/1=-2 | | 2x-48=16+6x | | t+7=2+-1 | | -4f=8-3f | | 4n+3n+18=60 | | 16t−11t=15 | | -18+2x=4x+14 | | 2p+3p-24=30 | | 1t+7=2+-1 | | 4y-13-11+24=180 | | -u+-13u=10 | | 2(8n-1)+9=8(2n+8) | | 8x-12+1=5x-5 | | 8x+11=5x=32 | | 10-(1)/(15)x=(1)/(10)x | | 4x-28=x+11 | | 1/2(6-2z)=-9/4z-1/8(-4z+6) | | 4u−12u−-17u+-u+-13u=10 |